16 research outputs found

    Whole genome characterization of sequence diversity of 15,220 Icelanders

    Get PDF
    Understanding of sequence diversity is the cornerstone of analysis of genetic disorders, population genetics, and evolutionary biology. Here, we present an update of our sequencing set to 15,220 Icelanders who we sequenced to an average genome-wide coverage of 34X. We identified 39,020,168 autosomal variants passing GATK filters: 31,079,378 SNPs and 7,940,790 indels. Calling de novo mutations (DNMs) is a formidable challenge given the high false positive rate in sequencing datasets relative to the mutation rate. Here we addressed this issue by using segregation of alleles in three-generation families. Using this transmission assay, we controlled the false positive rate and identified 108,778 high quality DNMs. Furthermore, we used our extended family structure and read pair tracing of DNMs to a panel of phased SNPs, to determine the parent of origin of 42,961 DNMs.Peer Reviewe

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Correction: Volume12, Issue1 Article Number7354 DOI10.1038/s41467-021-27675-w PublishedDEC 16 2021Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors. Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. Here, the authors conduct a GWAS and suggest protective effect of higher TSH on risk of thyroid cancer and goitre.Peer reviewe

    Author Correction:GWAS of thyroid stimulating hormone highlights the pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    The original version of this article contained an error in the results, in the second paragraph of the subsection entitled “Fine-mapping for potentially causal variants among TSH loci”, in which effect sizes for two variants were incorrectly reported

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors

    Rock garden at the entrance to the South British Insurance Company building, 155-161 Queen Street, Melbourne, 1961, architects Bates, Smart and McCutcheon [4] [picture] /

    Get PDF
    Condition: Good.; Title devised by cataloguer based on inscription on reverse.; Part of Wolfgang Sievers photographic archive.; Sievers number: 3116O; Also available in an electronic version via the Internet at: http://nla.gov.au/nla.pic-vn3971295; Also available as a negative PIC WS 3116O LOC Cold store PIC Siev B&WN-F

    Graphtyper enables population-scale genotyping using pangenome graphs.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowA fundamental requirement for genetic studies is an accurate determination of sequence variation. While human genome sequence diversity is increasingly well characterized, there is a need for efficient ways to use this knowledge in sequence analysis. Here we present Graphtyper, a publicly available novel algorithm and software for discovering and genotyping sequence variants. Graphtyper realigns short-read sequence data to a pangenome, a variation-aware graph structure that encodes sequence variation within a population by representing possible haplotypes as graph paths. Our results show that Graphtyper is fast, highly scalable, and provides sensitive and accurate genotype calls. Graphtyper genotyped 89.4 million sequence variants in the whole genomes of 28,075 Icelanders using less than 100,000 CPU days, including detailed genotyping of six human leukocyte antigen (HLA) genes. We show that Graphtyper is a valuable tool in characterizing sequence variation in both small and population-scale sequencing studies

    Ice on banks of Snowy River, Snowy Mountains, New South Wales, 1935, [3] [transparency]/

    No full text
    Title devised by cataloguer from list.; "Ice on banks of Snowy R. 10."--In ink on slide label.; Condition: Fair.; Part of: Collection of glass lantern slides of the Snowy Mountains, 1935.; Also available in an electronic version via the Internet at: http://nla.gov.au/nla.pic-vn4236846

    Assessing thyroid cancer risk using polygenic risk scores.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink belowGenome-wide association studies (GWASs) have identified at least 10 single-nucleotide polymorphisms (SNPs) associated with papillary thyroid cancer (PTC) risk. Most of these SNPs are common variants with small to moderate effect sizes. Here we assessed the combined genetic effects of these variants on PTC risk by using summarized GWAS results to build polygenic risk score (PRS) models in three PTC study groups from Ohio (1,544 patients and 1,593 controls), Iceland (723 patients and 129,556 controls), and the United Kingdom (534 patients and 407,945 controls). A PRS based on the 10 established PTC SNPs showed a stronger predictive power compared with the clinical factors model, with a minimum increase of area under the receiver-operating curve of 5.4 percentage points (P ≤ 1.0 × 10-9). Adding an extended PRS based on 592,475 common variants did not significantly improve the prediction power compared with the 10-SNP model, suggesting that most of the remaining undiscovered genetic risk in thyroid cancer is due to rare, moderate- to high-penetrance variants rather than to common low-penetrance variants. Based on the 10-SNP PRS, individuals in the top decile group of PRSs have a close to sevenfold greater risk (95% CI, 5.4-8.8) compared with the bottom decile group. In conclusion, PRSs based on a small number of common germline variants emphasize the importance of heritable low-penetrance markers in PTC.United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI

    A genome-wide association study yields five novel thyroid cancer risk loci.

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesThe great majority of thyroid cancers are of the non-medullary type. Here we report findings from a genome-wide association study of non-medullary thyroid cancer, including in total 3,001 patients and 287,550 controls from five study groups of European descent. Our results yield five novel loci (all with Pcombined<3 × 10(-8)): 1q42.2 (rs12129938 in PCNXL2), 3q26.2 (rs6793295 a missense mutation in LRCC34 near TERC), 5q22.1 (rs73227498 between NREP and EPB41L4A), 10q24.33 (rs7902587 near OBFC1), and two independently associated variants at 15q22.33 (rs2289261 and rs56062135; both in SMAD3). We also confirm recently published association results from a Chinese study of a variant on 5p15.33 (rs2736100 near the TERT gene) and present a stronger association result for a moderately correlated variant (rs10069690; OR=1.20, P=3.2 × 10(-7)) based on our study of individuals of European ancestry. In combination, these results raise several opportunities for future studies of the pathogenesis of thyroid cancer.National Institutes of Health University of Texas MD Anderson Cancer Center American Thyroid Association National Institutes of Health (NIH) Cancer Center Support Grant Netherlands Organization for Scientific Research Common Fund of the Office of the Director of the National Institutes of Health NCI NHGRI NHLBI NIDA NIMH NINDS NCI\SAIC-Frederick, Inc. (SAIC-F) Laboratory, Data Analysis and Coordinating Center (LDACC) University of Geneva University of Chicago University of North Carolina-Chapel Hill Harvard University Stanford University Washington University St Louis University of Pennsylvani
    corecore